[RAVAVAVAVAVAVAVAVA

2024 Pearson Education Ltd.

s

Pearson Edexcel Level 1/Level 2 GCSE (9-1)

(Tuesday 21 May 2024

Paper
reference

Computer Science
PAPER 2: Application of Computational Thinking

Afternoon (Time: 2 hours)

L

r
You must have:

and tools, including an IDE that you are familiar with which shows line numbers
« a'STUDENT CODING' folder containing code and data files

.

- a computer workstation with appropriate programming language code editing software

« printed and electronic copies of the Program Language Subset (PLS) document (enclosed).

S

.

Instructions

® Answer all questions on your computer.

® Save the new or amended code in the ‘COMPLETED CODING’ folder using the
name given in the question.

® Do not overwrite the original code and data files provided to you.

® You must not use the internet at any time during the examination.

Information

® The total mark for this paper is 75.
® The marks for each question are shown in brackets
— use this as a guide as to how much time to spend on each question.

® The 'STUDENT CODING' folder in your user area includes all the code and data files

you need.

Advice

® Read each question carefully before you start to answer it.
® Save your work regularly.
® Check your answers and work if you have time at the end.

Turn over

©

Pearson

PMT

PMT

Answer ALL questions.

Suggested time: 10 minutes

1

A program is written to provide information about the rainbow.

Colours and wavelengths are stored in arrays. For example, the colour Violet is
produced when the wavelength is from 380 to 424

The user enters an index and the colour at that array location is displayed. The user
enters a wavelength and the colour for that wavelength is displayed.

Open file Q01.py

Amend the code to:

« fix the syntax error on original line 5
waveTable = [380, 425, 450, 492, 577, 597", 622]

fix the NameError on original line 6
found = false

fix the syntax error on original line 8
wavelength = 0123

. fix the syntax error on original line 15
index = int (input ("Enter an index: ™)

« fix the NameError on original line 21
color = rainbow[index]

fix the ValueError on original line 22
print (int (colour))

fix the logic error on original line 26
ifT ((wavelength < 380) and (wavelength > 622)):

« fix the logic error on original line 29
index = 1

+ fix the logic error on original line 35
elift (waveTable[index] <= wavelength):

fix the logic error on original line 37
print (rainbow[index - 2])

Do not change the functionality of the given lines of code.
Do not add any additional functionality.

Save your amended code as QO1FINISHED.py

(Total for Question 1 = 10 marks)

P75441RA
EUEOm

PMT

Suggested time: 15 minutes
2 A program encrypts a message using a Caesar cipher.

The letters of the alphabet are shifted a set number of places. A positive shift moves
the letters to the right. A negative shift moves them to the left.

Blanks, symbols and numbers are not encrypted.

When the end of the alphabet is reached with a positive shift, shifting continues at
the start of the alphabet. When the start of the alphabet is reached with a negative
shift, shifting continues at the end of the alphabet.

For example, a shift of —2 encodes the plaintext letter P to the ciphertext letter N.
A shift of +4 encodes the plaintext letter X to the ciphertext letter B.

When working correctly, the program produces the encrypted ciphertext for these
plaintext messages and shift inputs.

Plaintext Shift Ciphertext

The Rainbow 4 Xli Vemrfsa
Alphabet Soup -5 Vgkcvwzo Njpk

123 N&* Bye 9 123 A&* Khn

Open file Q02.py

Amend the code to make the program work and produce the correct output.
You will need to:

« choose between alternative lines of code. Make a choice by removing the # at the
beginning of the line you choose to execute

« run the program with the data from the table and check it meets the
requirements.

Do not change the functionality of the given lines of code.
Do not add any additional functionality.

Save your amended code as QO2FINISHED.py

(Total for Question 2 = 10 marks)

P75441RA 3
HLCOm Turn over

PMT

Suggested time: 20 minutes

3

A program is required to calculate the total cost of items purchased. Items are sold by
count or by weight.

The user enters the number 1 if the purchase is by count or the number 5 if the
purchase is by weight of items. The user then enters either the count or the weight in
kilograms.

The program checks for invalid input. If the input is valid, the program calculates and
displays the total cost.

Currency formatting with two decimal places and a symbol is not required.

The table shows test results.

Purchase Countof @ Weightin

category items kilograms Sutput
1 3 Total cost is 3.69
1 0 Invalid number of items
5 4.5 Total cost is 15.525
5 —-6.6 Invalid weight
3 Invalid purchase type

Open file Q03.py

Amend the code to:

create an integer variable named purchaseType and set it to 0
complete a line with the correct logical operator and the correct constant
complete a line with the correct constant

complete a line to accept a real value for the weight in kilograms
complete a line to calculate the total cost based on weight

complete a line to check for a 0 or negative count of items

complete a line with the correct relational operator

add a line to display an informative message and the total cost.

Do not add any additional functionality.

Save your amended code as QO3FINISHED.py

(Total for Question 3 = 10 marks)

P75441RA
EUEOm

\

BLANK PAGE

P75441RA

ELEOm

5

Turn over »

PMT

PMT

Suggested time: 25 minutes
4 A small café provides cheese rolls and crisps for community events.

The table shows the amount of ingredients for each adult and each child attending

an event.
Ingredient Adult Child
Crisps 0.75 of a bag 0.33 of a bag
Cheese 40 grams 30 grams
Rolls 1.5 rolls 0.5 of a roll

An algorithm is used to determine how many crisps, how many rolls, and how much
cheese to order for an event.

Crisps are ordered by whole bags. A partial bag cannot be ordered.

Rolls are ordered by pack. A pack contains 24 rolls. A partial roll or a partial pack
cannot be ordered.

Cheese is ordered by pack. A pack of cheese weighs 500 grams. A partial pack of
cheese cannot be ordered.

The flowchart shows the algorithm for calculating the amount of ingredients that
must be ordered.

Open file Q04.py

Write the code to implement the algorithm in the flowchart.
Use the library and constants provided.
Use informative messages for the user.

Use comments, white space and layout to make the program easier to read and
understand.

Do not add any additional functionality.

Save your amended code as QO4FINISHED.py

(Total for Question 4 = 15 marks)

6 P75441RA
EUEOm

Get adults

Get children/

v

Calculate partial bags of

crisps required

v

/

Display partial ba97

of crisps required

v

Determine whole bags of

crisps to order

v

/

Display whole bags
of crisps to order

v

Calculate grams of cheese
required

y

Is grams of
cheese less

than or equal
to the

minimum?

Yes

/

Display "order one
pack of cheese" |

Determine whole number of
packs of cheese to order

v
Display packs of
cheese to order
v [

v

Calculate partial number

of rolls required

v

/ Dis

play partial number
of rolls required

v

Determine whole number of

rolls required

v

Is number of
rolls less than
or equal to
the minimum?

Display "order one
pack of rolls"

P75441RA
ELEOm

!

Determine whole number of
packs of rolls to order

v
/ Display packs of /
—

rolls to order

Turn over

PMT

Suggested time: 25 minutes

5 A program is being developed to work with pasta shapes. The pasta shape names are
stored in a one-dimensional array.

The user is shown a menu of options. When the user chooses an option, the program
performs the task.

The program loops until the user chooses the exit menu option.

Open file Q05.py

Amend the code to:

complete the getChoice() subprogram

- allow the user to enter a menu option number (no validation required)
- return the choice to the main program

complete the getShape () subprogram

- use a random number as an index into the pastaShapes array

- return the shape to the main program

complete the addShape () subprogram

- allow the user to enter a new pasta shape name

- add the new name to the end of the pastaShapes array

complete the main program

- call each subprogram based on the menu option entered by the user
- display the shape from the getShape () subprogram

- tell the user when an inputted option number is not on the menu.

Use the constants and variables provided.

Do not add any additional functionality.

Save your amended code as QO5FINISHED.py

(Total for Question 5 = 15 marks)

P75441RA
EUEOm

PMT

Suggested time: 25 minutes

6 A program is required to process data about cows. The data is stored in a comma
separated value text file named Cows.txt

The columns in the data file are:
name
breed

tag number.

Open file Q06.py

Write a program to meet these requirements:

create a key for each cow in the data. A valid key is a single string consisting of
(in this order)

- the first two letters of the breed name

- the tag number integer divided by 100

- the first two letters of the cow’s name

create a record for each cow. A valid record consists of (in this order)
- akey, atag number, a name and a breed

store the record for each cow in the cowTable

call the supplied subprogram, showTable(), to display the contents of the
cowTable

the program must work with any number of lines in the data file.

Use comments, white space and layout to make the program easier to read and
understand.

Do not add any additional functionality.

Save your amended code as QO6FINISHED.py

(Total for Question 6 = 15 marks)

TOTAL FOR PAPER =75 MARKS

P75441RA 9
ELEOm

BLANK PAGE

J

10

P75441RA

EUEOm

PMT

\

BLANK PAGE

P75441RA

ELEOm

1

PMT

BLANK PAGE

J

12

P75441RA

EUEOm

PMT

©2024 Pearson Education Ltd.

[RAVAVAVAVAVAVAVAVA

s

Pearson Edexcel Level 1/Level 2 GCSE (9-1)
(Tuesday 21 May 2024)

|

Computer Science

PAPER 2: Application of Computational Thinking
Programming Language Subset

ersern—[NINHINANNR ©
P 7 5 4 4 1 R A

Version 5
\ V,
[PLS Booklet h
Do not return this Booklet with the question paper.
. 7
\ y,
Turn over

Pearson

PMT

PMT

Contents
INEFOAUCTION ettt s st ss e ass bbb s bbbt bbb 4
L@ 01 0 1 T=T 01 (3PP 5
[AENTIFIELS .verereeeieeeiise ettt s st sse s sss bbb s ARk a sttt bbb an b 5
Data tYPES @NA CONVEISION ...euierieerirrieseieseeseisseisssissessesssssssssssesssessssssssssssssssssesssssssssssessssssssssssssesssesssssssssssassssssssssssssssssesens 5
PrIMITIVE AATa TYPES oureueeeiiieeiseiseisetsesseistissssesssessse s essssssssssesssesssesssessssssssssssssssssesssssasesssesssessssssssssesssssssesssesases 5
CONVEISION «.oueerieeeneeneueteeasessesse e essessesssessesss s ssesss s s ss s s s et s b asesees 5
CONSTANTS .ottt s R R R et s s b sees 5
Combining declaration and iNItialiSATION ... sssssssassssssssssssssssssssssssssssnes 5
STrUCTUIEA AL TYPES ettt ass st s s s s s s s s s s s s bt s st s s ssa st sssssnss 5
DIMENSIONS .ottt sss s bbb e bbbt es st 5
OPEIATONS ettt ssss st ssss s s ssssssssss st ss s ssssss s sss e tsssessssesssssssstsssassssasassssssssssssssssssassssessssesssssssssssassssssssnssssssons 6
ATENMETIC OPEIATOIS ..ottt sss s s s b s e s b bas s bR b b e s bt as s st basssensas 6
REIAIONAI OPEIALONS ...ttt b st s b ssss s b sass s b bRt b b e b s s s s b sasssss b bansasntens 6
LOGICAI/BOOIEAN OPEIALOISeuveriiieriireriseineiseisssisssisesisssssesssessssssssssssssssssesssssssssssessssssssssesssssssssssessssssssssssssssssesssssases 6
Programming CONSTIUCESueurieirecireeiresieiseciseisissssesssessssessssessesssesssessssessssssssses 7
ASSIGNIMENT ...ttt tsssessasessassssessseasassasasesssssssessssssssssssssssssssasesstsssssassssassssssssssssssssessssesssssssssssssssssnsssseses 7
SEQUENCE ettt s st s ettt s as e a st et e At et AR AR e At et s e b Attt s R ettt as b s as b s st assesantenantanes 7
BIOCKING oureeiteiriieinsisiessississsssississnes 7
SEIBCTION ettt R e et 7
REPETITION ettt st ss et s s sttt et es et st s b e st b s ba st en st s s sassasantans 7
JEEIATION ettt bbb bbb 7
SUDPIOGIAMS ...t sessaes s sesssssssssasssss s sass s s b s s sss s s s s s bes s s s e b s s s s esbesbass b s besssessessasssssbsbessassbensasssessanes 8
INPULS QN QULPULS ..ottt issssssss s sssssssesssssasssssssssssssssssssssssesssssssssessasssssssssassssssessasssssssssasssssssssassssssassansasssens 8
SCrEeN AN KEYDOAIT ...ttt sass s sssesss s bs s st s s s sasesasebsse s s s s sssesssesasesssess 8
FILES ettt ettt bss b bt s st s s s bR R AR bbb R ettt 8
SUPPOITEA SUDPIOGIAMSvieetetsieississiseississes 9
BUIIE-IN SUDPIOGIAMS ...ttt ssssss s ssanes 9
LiST SUDPIOGIAMS ettt ssssassses 10
SEING SUDPIOGIAMS ..ottt sssssssass s st sssssssssssssssss s ssss s s ssssssessssassssasssssssssssssssssssnsns 11
FOrMATEING STHNGS ottt sttt sssse s s s asst s sssssssssssssssssassasssssasseses 12

2 P75441RA

EUEOm

LIDIArY MOAUIES ...ttt st sssss s s sss s s ss bbbt b bbb s bt assnssssaens 13
RANAOM [IDIAry MOAUIE ...ttt ssse s s essse s sssessssessssssssessssesssessasesssessasessass 13
MaAth [IDrary MOAUIE ...t ss s sass bbb ss st s sssesasasssesssssssassssssesssesssesas 13
TiME [IDFArY MOAUIE ...ttt b st ssse s sss bbbt s s bbb bssasses 13
Turtle graphics Brary MOAUIE ...ttt s sssesasesssssasesssessssssses 14

TIPS FOF USING TUITIE ettt sss s b s s s s s s b ssssssssnsasssnns 14
Turtle Window and draWing CANVASiensinineissississns 14
Turtle creation, Visibility and MOVEMENTrirerereseieseissssississssisssssssssssssssssssssssssssssssssssssses 15
Turtle PoSitioNING AN AITECTION ... tsssssssssssssssssssssssssssssssssassases 15
TUILIE filliNG SNAPES ettt ssssssss st ssssssssssssssssssessssssss s sssasssasssassssssssssssssssssesssnses 15
Turtle CONTrOllING the PEN ..ttt s s bbb s s sasasssssssassases 16
TUIEIE CIICIS oot tsse st essse e s s s et s s bbb s R bbbt bbb 16
TUIEIE COIOUS ettt sttt ssss s s st s s bbb st b s sas 16

CONSOIE SESSION ettt st s st ase s s s s bbb s Rttt h b ase s 16

O STYIE ettt bas s a st s bbb sttt 16

LiNE CONTINUATION ...ttt sttt b b 17

Carriage return aNd [INE fEEU..... st a s s s s s sass bbb a s s sens 17

P75441RA 3

| [Turn over

PMT

PMT

Introduction

The Programming Language Subset (PLS) is a document that specifies which parts of
Python 3 are required in order that the assessments can be undertaken with confidence.
Students familiar with everything in this document will be able to access all parts of the
Paper 2 assessment. This does not stop a teacher/student from going beyond the scope
of the PLS into techniques and approaches that they may consider to be more efficient
or engaging.

Pearson will not go beyond the scope of the PLS when setting assessment tasks. Any
student successfully using more esoteric or complex constructs or approaches not
included in this document will still be awarded marks in Paper 2 if the solution is valid.

4 P75441RA
EUEOm

PMT

The pair of <> symbols indicates where expressions or values need to be supplied. They
are not part of the PLS.

Comments

Anything on a line after the character # is considered a comment.

Identifiers

Identifiers are any sequence of letters, digits and underscores, starting with a letter.
Both upper and lower case are supported.

Data types and conversion

Primitive data types

Variables may be explicitly assigned a data type during declaration.

Variables may be implicitly assigned a data type during initialisation.

Supported data types are:

Data type PLS
integer int

real float

Boolean bool
character str

Conversion

Conversion is used to transform the data types of the contents of a variable using int(),
str(), float(), bool() or list(). Conversion between any allowable types is permitted.

Constants

Constants are conventionally named in all uppercase characters.
Combining declaration and initialisation

The data type of a variable is implied when a variable is assigned a value.
Structured data types

A structured data type is a sequence of items, which themselves are typed. Sequences
start with an index of zero.

Data type Explanation PLS

string A sequence of characters str

array A sequence of items with the same (homogeneous) data type list

record A sequence of items, usually of mixed (heterogenous) data types | list
Dimensions

The number of dimensions supported by the PLS is two.

The PLS does not support ragged data structures. Therefore, in a list of records, each
record will have the same number of fields.

P75441RA 5
HLCOm Turn over

()
Operators
Arithmetic operators
Arithmetic operator Meaning
/ division
* multiplication
*x exponentiation
+ addition
- subtraction
// integer division
% modulus
Relational operators
Relational operator Meaning
== equal to
I= not equal to
> greater than
>= greater than or equal to
< less than
<= less than or equal to
Logical/Boolean operators
Operator Meaning
and both sides of the test must be true to return true
or either side of the test must be true to return true
not inverts
. J
6 P75441RA

EUEOm

PMT

Programming constructs

Assignment

Assignment is used to set or change the value of a variable.

<variable identifier>

<variable identifier>

Sequence

<value>

<expression>

Every instruction comes one after the other, from the top of the file to the bottom of the file.

Blocking

Blocking of code segments is indicated by indentation and subprogram calls. These
determine the scope and extent of variables they declare.

Selection

if <expression>:
<command>

if <expression>:
<command>
else:
<command>

if <expression>:
<command>
elif <expression>:
<command>
else:
<command>

Repetition

while <condition>:
<command>

Iteration

for <id> in <structure>:
<command>

If <expression> is true, then command is executed.

If <expression> is true, then first <command> is
executed, otherwise second <command> is executed.

If <expression> is true, then first <command> is
executed, otherwise the second <expression> test is
checked. If true, then second <command> is executed,
otherwise third <command> is executed.

Supports multiple instances of ‘elif".

The ‘else’is optional with the ‘elif’.

Pre-conditioned loop. This executes <command> while
<condition> is true.

Executes <command> for each element of a
data structure, in one dimension.

for <id> in range (<start>, <stop>): | Count-controlled loop. Executes <command> a

<command>

fixed number of times, based on the numbers
generated by the range function. <stop> is
required. <start> is optional.

for <id> in range (<start>, <stop>, | Same asabove, except that <step> influences

<step>):
<command>

P75441RA
ELEOm

the numbers generated by the range function.
<stop> is required. <start> and <step> are
optional.

7

Turn over

PMT

Subprograms

def <procname> ():
<command>

def <procname> (<paramA>, <paramB>):

<command>

def <funcname> ():
<command>
return (<value>)

def <funcname> (<paramA>, <paramB>):

<command>
return (<value>)

Inputs and outputs

Screen and keyboard

print (<item>)

input (<prompt>)

PMT

A procedure with no parameters

A procedure with parameters

A function with no parameters

A function with parameters

Displays <item> on the screen

Displays <prompt> on the screen and

returns the line typed in

Files

The PLS supports manipulation of comma separated value text files.

File operations include open, close, read, write and append.

<fileid> = open (<filename>,
for <line> in <fileid>:

<alist> = <fileid>.readlines ()

"r") | Opens file for reading
Reads every line, one at a time

Returns a list where each item is a line

from the file

Returns a line from a file. Returns an empty

string on the end of the file

<aline> = <fileid>.readline ()
<fileid> = open (<filename>, "w")
<fileid> = open (<filename>, "a")

<fileid>.writelines (<structure>)

Opens a file for writing
Opens a file for appending

Writes <structure> to a file. <structure> is

a list of strings

<fileid>.write (<aString>)

<fileid>.close ()

Writes a single string to a file

Closes file

P75441RA
EUEOm

Supported subprograms
Built-in subprograms

The PLS supports these built-in subprograms.

Subprogram

bool (<item>)

chr (<integer>)

float (<item>)

input (<prompt>)

int (<item>)

len (<object>)

ord (<char>)

print (<item>)

range (<start>, <stop>, <step>)

round (<x>, <n>)

str (<item>)

P75441RA
ELEOm

Description

Returns <item> converted to the equivalent
Boolean value

Returns the string which matches the Unicode
value of <integer>. The first 128 characters of
Unicode are equivalent to ASCII.

Returns <item> converted to the equivalent
real value

Displays the content of prompt to the screen
and waits for the user to type in characters
followed by a new line

Returns <item> converted to the equivalent
integer value

Returns the length of the <object>, such as a
string, one-dimensional or two-dimensional
data structure

Returns the integer equivalent to the Unicode
string of the single character <char>. The first
128 characters of Unicode are equivalent to
ASCII.

Prints <item> to the display

Generates a list of numbers using <step>,
beginning with <start> and up to, but not
including, <stop>. A negative value for <step>
goes backwards. <stop> is required. <start>
and <step> are optional. The default value for
<start> is zero. The default value for <step> is
positive one.

Rounds <x> to the number of <n> digits after
the decimal (uses the 0.5 rule). The <n> is
optional. If omitted, the function returns the
nearest integer to <x>.

Returns <item> converted to the equivalent
string value

Turn over

9

PMT

()
List subprograms
The PLS supports these list subprograms.
Subprogram Description
<list>.append (<item>) Adds <item> to the end of the list
del <list> [<index>] Removes the item at <index> from list
<list>.insert (<index>, <item>) Inserts <item> just before an existing one
at <index>
<alList> = list () Two methods of creating a list structure.
<alList> = [] Both are empty.
. J
10 P75441RA

EUEOm

PMT

PMT

String subprograms

The PLS supports these string subprograms.

Subprogram Description

len (<string>) Returns the length of <string>

<string>.find (<substring>, Returns the location of the first instance of
<start>, <end>) <substring> in the original <string>, reading from

left to right. <start> is the index to begin the find. The
default is zero. <end> is the index to stop the find.
The default is the end of the string. Returns -1, if not

found.
<string>.index (<substring>, Returns the location of the first instance of
<start>, <end>) <substring> found in the original <string> as read

from left to right. Raises an exception if not found.
<substring> is required. <start> and <end> are
optional. The default value for <start> is zero.

The default value for <end> is the end of the string.

<string>.isalpha () Returns True, if all characters are alphabetic A-Z

<string>.isalnum () Returns True, if all characters are alphabetic A-Z or
digits 0-9

<string>.isdigit () Returns True, if all characters are digits 0-9, exponents
are digits

<string>.replace (<s1>, <s2>) Returns original string with all occurrences of <s1>
replaced with <s2>

<string>.split (<char>) Returns a list of all substrings in the original, using
<char> as the separator

<string>.strip (<char>) Returns original string with all occurrences of <char>
removed from the front and back

<string>.upper () Returns the original string in uppercase

<string>.lower () Returns the original string in lowercase

<string>.isupper () Returns True, if all characters are uppercase

<string>.islower () Returns True, if all characters are lowercase

<string>.format (<placeholders>) | Formats values and puts them into the
<placeholders>

P75441RA 11
HLCOm Turn over

PMT

Formatting strings

Output can be customised to suit the problem requirements and the user’s needs by
forming string output.

<string>.format () can be used with positional placeholders and format descriptors.
Placeholders take the form:

{:<align><sign><width><.precision><type>}

Placeholder Option Description
align < Left aligned. Default for most items, like text.
> Right aligned. Default for numbers.
A Centre aligned.
sign + Use a sign for both positive and negative numbers.
— Use a sign only for negative numbers. Default for negative
numbers.
space Use leading spaces for positive numbers and a minus sign for

negative numbers.
width whole number | The total width of the field.

precision whole number | The number of digits after the decimal.

type S String. Default for strings, if not supplied.
d Numbers in base 10 (denary). Default for integers, if not
supplied.
f Fixed-point notation. Formats a number with exactly the

number of digits to the right of the decimal given by precision

Here is an example:

layout = "{:>10} {:~5d} {:7.4f}"
print (layout.format (“Fred”, 358, 3.14159))

The * operator can be used to generate a line of repeated characters, for example: “="* 10 will
generate g T

Concatenation of strings is done using the + operator.

String slicing is supported. myName[0:2] gives the first two characters in the variable
myName.

12 P75441RA
[

Library modules

The functionality of a library module can only be accessed once the library module is
imported into the program code.

Statement Description

import <library> Imports the <library> module into the current program

Random library module

The PLS supports these random library module subprograms.

Subprogram Description
random.randint (<a>,) Returns a random integer X so that <a> <= X <=
random.random () Returns a float number in the range of 0.0 and 1.0

Math library module

The PLS supports these math library module subprograms and constant.

Subprogram or constant Description

math.ceil (<r>) Returns the smallest integer not less than <r>
math.floor (<r>) Returns the largest integer not greater than <r>
math.sqrt (<x>) Returns the square root of <x>

math.pi The constant Pi (IT)

Time library module

The PLS supports this time library module subprogram.

Subprogram Description

time.sleep (<sec>) The current process is suspended for the given number of

seconds, then resumes at the next line of the program

P75441RA

| [Turn over

13

PMT

PMT

Turtle graphics library module
Tips for using turtle

The default mode for the PLS turtle is “standard”. This means that when a turtle is
created, it initially points to the right (east) and angles are counterclockwise. You can
change modes using turtle.mode ().

The turtle window is one size and the turtle drawing canvas (inside the window) can be
a different size. To make the turtle window bigger, a screen needs to be created and set
up. Here is an example:

WIDTH = 800

HEIGHT = 400

screen = turtle.Screen ()
screen.setup (WIDTH, HEIGHT)

To make the drawing canvas bigger use <turtle>.screensize ().

In some development environments, the turtle window will close as soon as the program
completes. There are two ways to keep it open:

« Add turtle.done () as the last line in the code file. This will keep the window open
until closed with the exit cross in the upper right-hand corner. It also allows scrollbars
on the window.

« Add aline asking for keyboard input, such as input(), as the last line. This will
keep the window open until the user presses a key in the console session. The scrollbars
will not work.

Turtle window and drawing canvas

The PLS supports these turtle library module subprograms to control the window and
drawing canvas. Notice that these subprograms do not use the name of the turtle you
create to the left of the dot, but the library name, “turtle” or a <window> variable.

Subprogram Description

<window>.setup (<width>, <height>) Sets the size of the turtle window to <width>
x <height> in pixels. Requires use of
turtle.Screen () to create <window> first.

turtle.done () Use as the last line of the file to keep the turtle
window open until it is closed using the exit
cross in the upper right-hand corner of the
window

turtle.mode (<type>) <type> is one of the strings “standard” or “logo”.
A turtle in standard mode, initially points to the
right (east) and angles are counterclockwise. A
turtle in logo mode, initially points up (north)
and angles are clockwise.

turtle.Screen () Returns a variable to address the turtle
window. Use with <window>.setup().

turtle.screensize (<width>, <height>) | Makes the scrollable drawing canvas size equal
to <width> x <height> in pixels. Note, use
with turtle.done () so scrollbars will be active.

14 P75441RA
[

Turtle creation, visibility and movement

The PLS supports these turtle library module subprograms to control the turtle creation,

visibility and movement.

Subprogram
<turtle> = turtle.Turtle ()
<turtle>.back (<steps>)

<turtle>.forward (<steps>)

<turtle>.hideturtle ()
<turtle>.left (<degrees>)
<turtle>.right (<degrees>)
<turtle>.showturtle ()

<turtle>.speed (<value>)

Turtle positioning and direction

Description
Creates a new turtle with the variable name <turtle>

Moves backward (opposite-facing direction) for
number of <steps>

Moves forward (facing direction) for number of
<steps>

Makes the <turtle> invisible

Turns anticlockwise the number of <degrees>
Turns clockwise the number of <degrees>
Makes the turtle visible

n u

The <value> can be set to “fastest” “fast”, “normal”,

n i

“slow”, “slowest”. Alternatively, use the numbers 1 to 10

to increase speed. The value of 0 is the fastest.

The PLS supports these turtle library module subprograms to control the positioning

and direction.

Subprogram
<turtle>.home ()

<turtle>.reset ()

<turtle>.setheading (<degrees>)

<turtle>.setposition (x>, <y>)

Turtle filling shapes

Description

Moves to canvas origin (0, 0)

Clears the drawing canvas, sends the turtle home and

resets variables to default values
Sets the orientation to <degrees>

Positions the turtle at coordinates (<x>, <y>)

The PLS supports these turtle library module subprograms to control filling.

Subprogram
<turtle>.begin fill ()
<turtle>.end_fill ()

<turtle>.fillcolor (<colour>)

P75441RA
ELEOm

Description

Call just before drawing a shape to be filled

Call just after drawing the shape to be filled. You must

call <turtle>.begin_fill() before drawing.

Sets the colour used to fill. The input argument is a
string, for example: "red".

Turn over

15

PMT

PMT

Turtle controlling the pen

The PLS supports these turtle library module subprograms to control the pen.

Subprogram Description

<turtle>.pencolor (<colour>) Sets the colour of the pen. The input argument is a
string or an RGB colour, for example: "red".

<turtle>.pendown () Puts the pen down

<turtle>.pensize (<width>) Makes the pen the size of <width> (positive number)

<turtle>.penup () Lifts the pen up

Turtle circles

The PLS supports this turtle library module subprogram to draw a circle.

Subprogram Description

<turtle>.circle (<radius>, <extent>) | Draws a circle with the given <radius>. The
centre is the <radius> number of units to
the left of the turtle. That means, the turtle is
sitting on the edge of the circle. The parameter
<extent> does not need to be given, but
provides a way to draw an arg, if required. An
extent of 180 would be half a circle.

Turtle colours

Python colours can be given by using a string name. There are many colours and you can
find information online for lists of all the available colours.

Here are a few to get you started:

blue black green yellow
orange red pink purple
indigo olive lime navy
orchid salmon peru sienna
white cyan silver gold

Console session

A console session is the window or command line where the user interacts with a
program. It is the default window that displays the output from print () and echoes
the keys typed from the keyboard.

It will appear differently in different development tools.
Code style

Although Python does not require all arithmetic and logical/Boolean expressions to be
fully bracketed, it might help the readability to bracket them. This is especially useful if
the programmer or reader is not familiar with the order of operator precedence.

16 P75441RA
[

PMT

The same is true of spaces. The logic of a line can be more easily understood if a few extra
spaces are introduced. This is especially helpful if a long line of nested subprogram calls
is involved. It can be difficult to read where one ends and another begins. The syntax of
Python is not affected, but it can make understanding the code much easier.

Line continuation

Long code lines may also be difficult to read, especially if they scroll off the edge of the
display window. It's always better for the programmer to limit the amount of scrolling.

There are several ways to break long lines in Python.

Python syntax allows long lines to be broken inside brackets () and square brackets [].
This works very well, but care should be taken to ensure that the next line is indented to
a level that aids readability. It is even possible and recommended to add an extra set of
brackets () to expressions to break long lines.

Python also has a line continuation character, the backslash \ character. It can be inserted,
following strict rules, into some expressions to cause a continuation. Some editors will
automatically insert the line continuation character if the enter key is pressed.

Carriage return and line feed

These affect the way outputs appear on the screen and in a file. Carriage return means
to go back to the beginning of the current line without going down to the next line. Line
feed means to go down to the next line. Each is a non-printable ASCII character, that has
an equivalent string in programming languages.

Name Abbreviation ASCIl hexadecimal String
Carriage return CR 0x0D "\r"
Line feed LF 0x0A “\n"

These characters are used in some combination to control outputs. Unfortunately, not
every operating system uses the same. However, editors automatically convert input and
output files to make sure they work properly. In Python, print () automatically adds
them so that the console output appears on separate lines.

When writing code to handle files, a programmer will need to remove some of these
characters when reading lines from files and add them when writing lines to files. If
needed, they are added with string concatenation. If needed to be removed, they are
removed using the strip () subprogram.

P75441RA 17
| [

BLANK PAGE

J

18

P75441RA

EUEOm

PMT

\

BLANK PAGE

P75441RA

ELEOm

19

PMT

BLANK PAGE

J

20

P75441RA

EUEOm

PMT

